Thermodynamics of imbibition in capillaries of double conical structures—hourglass, diamond, and sawtooth shaped capillaries

Author:

Iwamatsu MasaoORCID

Abstract

Thermodynamics of imbibition (intrusion and extrusion) in capillaries of double conical structures is theoretically studied using the classical capillary model. By extending the knowledge of the thermodynamics of a single conical capillary, not only the nature of spontaneous imbibition but that of forced imbibition under applied external pressure are clarified. Spontaneous imbibition in capillaries of double conical structure can be predicted from the Laplace pressure in a single conical capillary. To understand the forced imbibition process, the free energy landscape along the imbibition pathway is calculated. This landscape shows either a maximum or a minimum. The former acts as the energy barrier, and the latter acts as the trap for the liquid–vapor meniscus so that the imbibition process can be either abrupt with a pressure hysteresis or gradual and continuous. The landscape also predicts a completely filled, a half-filled, and a completely empty state as the thermodynamically stable state. Furthermore, it also predicts a completely filled and a half-filled state of metastable liquid, which can be prepared by the combination of the intrusion and the extrusion process. Our study could be useful for understanding various natural fluidic systems and for designing functional fluidic devices such as a diode and a switch.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3