Intrusion and extrusion of water in hydrophobic nanopores

Author:

Tinti Antonio,Giacomello AlbertoORCID,Grosu Yaroslav,Casciola Carlo Massimo

Abstract

Heterogeneous systems composed of hydrophobic nanoporous materials and water are capable, depending on their characteristics, of efficiently dissipating (dampers) or storing (“molecular springs”) energy. However, it is difficult to predict their properties based on macroscopic theories—classical capillarity for intrusion and classical nucleation theory (CNT) for extrusion—because of the peculiar behavior of water in extreme confinement. Here we use advanced molecular dynamics techniques to shed light on these nonclassical effects, which are often difficult to investigate directly via experiments, owing to the reduced dimensions of the pores. The string method in collective variables is used to simulate, without artifacts, the microscopic mechanism of water intrusion and extrusion in the pores, which are thermally activated, rare events. Simulations reveal three important nonclassical effects: the nucleation free-energy barriers are reduced eightfold compared with CNT, the intrusion pressure is increased due to nanoscale confinement, and the intrusion/extrusion hysteresis is practically suppressed for pores with diameters below 1.2 nm. The frequency and size dependence of hysteresis exposed by the present simulations explains several experimental results on nanoporous materials. Understanding physical phenomena peculiar to nanoconfined water paves the way for a better design of nanoporous materials for energy applications; for instance, by decreasing the size of the nanopores alone, it is possible to change their behavior from dampers to molecular springs.

Funder

EC | FP7 | FP7 Ideas: European Research Council

Partnership for Advanced Computing in Europe AISBL

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3