Semiconducting nonperovskite ferroelectric oxynitride designed ab initio

Author:

Yu Qisheng1ORCID,Huang Jiawei1ORCID,Ke Changming12,Qian Zhuang1,Ma Liyang1ORCID,Liu Shi12ORCID

Affiliation:

1. Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University 1 , Hangzhou, Zhejiang 310030, China

2. Institute of Natural Sciences, Westlake Institute for Advanced Study 2 , Hangzhou, Zhejiang 310024, China

Abstract

The recent discovery of HfO2-based and nitride-based ferroelectrics that are compatible to the semiconductor manufacturing process has revitalized the field of ferroelectric-based nanoelectronics. Guided by a simple design principle of charge compensation and density functional theory calculations, we discover that HfO2-like mixed-anion materials, TaON and NbON, can crystallize in the polar Pca 2 1 phase with a strong thermodynamic driving force to adopt anion ordering spontaneously. Both oxynitrides possess large remnant polarization, low switching barriers, and unconventional negative piezoelectric effect, making them promising piezoelectrics and ferroelectrics. Distinct from HfO2 that has a wide bandgap, both TaON and NbON can absorb visible light and have high charge carrier mobilities, suitable for ferroelectric photovoltaic and photocatalytic applications. This class of multifunctional nonperovskite oxynitride containing economical and environmentally benign elements offers a platform to design and optimize high-performing ferroelectric semiconductors for integrated systems.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3