Trapping and exciton-exciton annihilation assisted ultrafast carrier dynamics in nanosheets of 2H–MoSe2 and Cr doped 1T/2H–MoSe2

Author:

Mukherjee Soumya1ORCID,NM Anjan Kumar1ORCID,Mondal Ayan2ORCID,Mahalingam Venkataramanan2ORCID,Kamaraju N.1ORCID

Affiliation:

1. Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata 1 , Nadia 741246, West Bengal, India

2. Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata 2 , Nadia 741246, West Bengal, India

Abstract

Nanosheets of transition metal dichalcogenides with prospects of photocatalysis and optoelectronics applications have significant potential in device fabrication due to their low-cost production and easily controllable morphology. Here, non-degenerate pump-probe differential transmission studies with varying pump-fluence have been carried out on single-phase 2H–MoSe2 and mixed-phase 1T/2H–MoSe2 nanosheets to characterize their excited carrier dynamics. For both the samples, the differential probe transmission data show photo-induced bleaching at earlier pump-probe delay followed by photo-induced absorption unveiling signatures of exciton-state filling, exciton trapping, defect-mediated photo-induced probe absorption and recombination of defect bound excitons. The exciton trapping and photo-induced absorption by the trapped-carriers are estimated to occur with time constant of ∼430 to 500 fs based on multi-exponential modelling of the differential transmission till pump-probe delay of ∼3.5 ps. Biexponential modeling of the subsequent slow-recovery of the negative differential transmission at pump-probe delay ≳3.5 ps reveals that the exciton recombination happens via two distinct decay channels with ∼25 to 55 ps (τ1) and ≳1 ns (τ2) time constants. Pump-fluence dependent reduction in τ1 and further modelling of exciton population using higher order kinetic rate equation reveals that the two-body exciton-exciton annihilation governs the exciton recombination initially with a decay rate of ∼10−8 cm3s−1. The detailed analysis suggests that the fraction of total excitons that decay via long decay channel decreases with increasing exciton density for 2H–MoSe2, in contrast to 1T/2H–MoSe2 where the fraction of excitons decaying via long decay channel remains constant.

Funder

Ministry of Education, India

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3