Copper-based intersectional nanofabrication of optical nanoantennas for volatile organic compound sensing

Author:

Li Meng1ORCID,Huang Yan1ORCID,Sun Lipeng1ORCID,Zheng Zhaoqiang2,Ma Churong1,Li Xiangping1ORCID,Guan Bai-Ou1ORCID,Chen Kai1ORCID

Affiliation:

1. Guangdong Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University 1 , Guangzhou 510632, China

2. School of Materials and Energy, Guangdong University of Technology 2 , Guangzhou 510006, China

Abstract

Plasmonic sensors leverage the enhanced near-fields associated with the constituent optical nanoantennas to achieve better sensing performance. The design and fabrication of these optical nanoantennas, especially metallic ones, are thus becoming critical steps to advance this thriving and important field. Low-cost and high-throughput nanofabrication techniques are greatly desirable. In this work, we demonstrate a cost-effective nanofabrication method derived from conventional colloidal lithography. With polystyrene nanospheres and subsequently formed copper (Cu) nanoholes as consecutive deposition masks, disk nanoantennas can be produced in a large-scale fashion with no dry etching required. Furthermore, the nanodisks can be readily tuned via thermal heating of the sacrificial Cu nanohole layers. Finally, we combined the fabricated Au nanodisks with the metal-organic framework material zeolitic imidazolate framework-8 and demonstrated highly sensitive detection of volatile organic compounds. We believe that this nanofabrication method could be readily implemented in a variety of plasmonic sensors.

Funder

National Natural Science Foundation of China

Guangdong Provincial Applied Science and Technology Research and Development Program

Special Funds for Chinese Central Universities

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3