An improved, automated whole air sampler and gas chromatography mass spectrometry analysis system for volatile organic compounds in the atmosphere

Author:

Lerner Brian M.ORCID,Gilman Jessica B.,Aikin Kenneth C.,Atlas Elliot L.ORCID,Goldan Paul D.,Graus Martin,Hendershot Roger,Isaacman-VanWertz Gabriel A.ORCID,Koss Abigail,Kuster William C.ORCID,Lueb Richard A.,McLaughlin Richard J.,Peischl JeffORCID,Sueper Donna,Ryerson Thomas B.,Tokarek Travis W.,Warneke Carsten,Yuan BinORCID,de Gouw Joost A.ORCID

Abstract

Abstract. Volatile organic compounds were quantified during two aircraft-based field campaigns using highly automated, whole air samplers with expedited post-flight analysis via a new custom-built, field-deployable gas chromatography–mass spectrometry instrument. During flight, air samples were pressurized with a stainless steel bellows compressor into electropolished stainless steel canisters. The air samples were analyzed using a novel gas chromatograph system designed specifically for field use which eliminates the need for liquid nitrogen. Instead, a Stirling cooler is used for cryogenic sample pre-concentration at temperatures as low as −165 °C. The analysis system was fully automated on a 20 min cycle to allow for unattended processing of an entire flight of 72 sample canisters within 30 h, thereby reducing typical sample residence times in the canisters to less than 3 days. The new analytical system is capable of quantifying a wide suite of C2 to C10 organic compounds at part-per-trillion sensitivity. This paper describes the sampling and analysis systems, along with the data analysis procedures which include a new peak-fitting software package for rapid chromatographic data reduction. Instrument sensitivities, uncertainties and system artifacts are presented for 35 trace gas species in canister samples. Comparisons of reported mixing ratios from each field campaign with measurements from other instruments are also presented.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3