Possibility of the existence of a topological defect in dynamic deformation of the free-standing ultrathin silicon wafer during MeV ion irradiation

Author:

Minagawa Hideaki1ORCID,Tsuchida Hidetsugu12ORCID

Affiliation:

1. Department of Nuclear Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8530, Japan

2. Quantum Science and Engineering Center, Kyoto University, Uji, Kyoto 611-0011, Japan

Abstract

We study the ion-irradiation-induced deformation of free-standing ultrathin Si wafers with a thickness of 8 [Formula: see text]m. The time-response spectrum of the deformation was measured using a laser displacement meter with a time resolution of 1 ms. The results showed that the deformation appeared during irradiation and disappeared after irradiation. The deformation was composed of a fast deformation with a millisecond time constant and a slow deformation with a second time constant. We performed a model calculation to identify the deformation mechanisms. We found that the fast deformation originated from expansion or shrinkage of crystal lattice caused by beam heating and deduced that the slow deformation resulted from the topological defect formation in Si crystals. The relaxation time of the slow deformation is related to the coordination number of disappeared topological defects. In this experiment, we conclude that the deformation of Si crystals maintains reversible behavior in the formation of topological defects up to the coordination number 5.

Funder

Kansai Atomic Energy Council

Kyoto University Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference32 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Defects in semiconductors;Journal of Applied Physics;2022-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3