Effect of static electric fields on liquid water, its structure, dynamics, and hydrogen bond asymmetry: A molecular dynamics simulation study of TIP4P/2005 water model

Author:

Prasad Mahabir1ORCID,English Niall J.2ORCID,Chakraborty Somendra Nath1ORCID

Affiliation:

1. Department of Chemistry, Sikkim University 1 , Gangtok, Sikkim 737102, India

2. School of Chemical and Bioprocess Engineering, University College Dublin 2 , Belfield Dublin 4, Ireland

Abstract

We study the effect of static electric fields of 0.1, 0.4, and 1.0 V/nm on the hydrogen bond structure and dynamics of TIP4P/2005 water at 1 bar and at temperatures between 300 and 200 K using molecular dynamics simulations. At all these temperatures, simulating liquid water with electric fields of 0.1 and 0.4 V/nm has no additional effect on its structural and dynamical changes, which otherwise already take place due to cooling. However, the introduction of 1.0 V/nm field enhances the slowing down of liquid water dynamics, crystallizes it to cubic ice at 240 and 220 K, and amorphizes it at 200 K. At 240 and 220 K, crystallization occurs within 5 and 50 ns, respectively. An electric field of 1 V/nm increases the relaxation times in addition to what cooling does. We note that when liquid water’s metastability limit is reached, crystallization is averted and amorphization takes place. Both equilibrium (liquid–solid) and non-equilibrium (liquid–amorphous) transformations are observed at 1 V/nm. Moreover, with an increase in the electric field, H-bonds become stronger. However, the donor–acceptor asymmetry (the difference between the strengths of two donor/acceptor bonds) remains even when crystallization or amorphization takes place. At low temperatures, increasing electric fields on liquid water increases both its crystallization and amorphization tendencies.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3