Abstract
Elucidating the underlying mechanisms of molecular solidification in both homo- and hetero-geneous systems is of paramount importance for a large swathe of natural phenomena (whether on Earth or throughout the Universe), as well as a whole litany of industrial processes. One lesser-studied aspect of these disorder-order transitions is the effect of external applied fields, shifting both thermodynamic driving forces and underlying kinetics, and, indeed, fundamental mechanisms themselves. Perhaps this is nowhere more apparent than in the case of externally-applied electric fields, where there has been a gradually increasing number of reports in recent years of electro-manipulated crystallisation imparted by such electric fields. Drawing motivations from both natural phenomena, state-of-the-art experiments and, indeed, industrial applications, this review focusses on how non-equilibrium molecular simulation has helped to elucidate crystallisation phenomena from a microscopic perspective, as well as offering an important, predictive molecular-design approach with which to further refine in-field-crystallisation operations.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献