Eddy viscosity enhanced temporal direct deconvolution models for temporal large-eddy simulation of turbulence

Author:

Abstract

A dynamic eddy viscosity (DEV) model and a constant eddy viscosity (CEV) model are proposed for stabilizing the temporal direct deconvolution model (TDDM) in temporal large-eddy simulation of turbulence. Compared to the original unresolved subfilter-scale model used in TDDM, the new eddy viscosity models reduce the number of empirical coefficients and make TDDM more convenient to be applied in practice. The DEV model does not have any empirical coefficients, and the CEV model has only one constant model coefficient that is independent of the filter width and insensitive to the grid resolution. To solve the stability issue of TDDM, an algorithm called the variable filter-width method (VFM) is proposed. In VFM, the filter width is initialized by a small value or 0 and then grows linearly in a small number of time steps until it reaches the target filter width. The three dimensional homogeneous isotropic turbulence is applied to investigate the performance of the proposed models. In the a posteriori testing at different grid resolutions, eddy viscosity enhanced temporal direct deconvolution models show a good accuracy in predicting various statistics and instantaneous spatial structures of turbulence, and they perform better than the original model, especially in the prediction of subfilter-scale (SFS) stress and SFS energy flux. Moreover, the energy spectrum and other flow statistics predicted by the CEV model with a fixed model coefficient 0.03 are in a good agreement with the filtered DNS.

Funder

National Natural Science Foundation of China

National Numerical Wind Tunnel Project of China

Shenzhen Science and Technology Program

Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory

Department of Science and Technology of Guangdong Province

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference72 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3