Novel mixed approximate deconvolution subgrid-scale models for large-eddy simulation

Author:

Amani EhsanORCID,Molaei Mohammad BagherORCID,Ghorbani MortezaORCID

Abstract

Approximate deconvolution (AD) has emerged as a promising closure for large-eddy simulation in complex multi-physics flows, where the conventional pure dynamic eddy-viscosity (DEV) models experience issues. In this research, we propose novel improved mixed hard-deconvolution or secondary-regularization models and compare their performance with the existing standard mixed AD-DEV and penalty-term regularizations. For this aim, five consistency criteria, based on the properties of the modeled sub-filter-scale stress in limiting conditions, are introduced for the first time. It is proved that the conventional hard-deconvolution models do not adhere to a couple of important primary criteria. Furthermore, through a priori and a posteriori analyses of Burgers turbulence and turbulent channel flow, it is manifested that the inconsistency with the primary criteria can result in larger modeling errors, the over-prediction and pileup of kinetic energy in eddies of a length scale between the explicit filter width and grid size, and even the solution instability. On the other hand, the favorable characteristics of the new mixed models, in terms of the consistency criteria, significantly improve the accuracy of the predictions, the solution stability, and even the computational cost, particularly for one of the new models called mixed alternative-DEV (A-DEV).

Funder

TUBITAK

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3