Assessment of subgrid dispersion models for large-eddy simulations of turbulent jet flows with dilute spray droplets

Author:

Angelilli Lorenzo1ORCID,Ciottoli Pietro Paolo2ORCID,Picano Francesco3ORCID,Valorani Mauro2ORCID,Im Hong G.1ORCID

Affiliation:

1. Physical Science and Engineering, Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

2. Department of Aerospace and Mechanical Engineering, Sapienza-University of Rome, Via Eudossiana 18, 00184 Rome, Italy

3. Department of Aerospace and Mechanical Engineering, University of Padova, Lungargine del Piovego, 2/3, 35131 Padova, Italy

Abstract

High-fidelity simulations for polydispersed sprays in the Eulerian–Lagrangian framework need to incorporate subgrid-scale effects in the particle evolution equations. Although the quasi-linear evaporation rate formulation captures evaporating droplet statistics, further improvement is required when subgrid-scale velocity effects become essential. The subgrid dispersion model strongly affects droplets spatial distribution, and subsequently net evaporation rate, depending on how rapidly they are dispersed into the dry air region. The main original contribution of this study is to assess the performances of a number of commonly used dispersion models in a consistent manner, against a reference direct simulation results. The models considered are (i) discrete random walk, (ii) approximate deconvolution method, (iii) stochastic model based on the Langevin equation, and (iv) combined approximate deconvolution method with the Langevin equation. Mass and enthalpy transfer source terms together with droplet diameters and particle distributions were compared against corresponding direct numerical and large-eddy simulations without a model as reference cases. Numerical results at low Stokes and moderate Reynolds numbers indicate that the dispersion model choice does not affect Eulerian field averages or fluctuations. However, proper dispersion models are essential to capture droplet distributions in the far-field region after jet breakup for Stokes number smaller than unity. The unclosed Lagrangian momentum equation without any dispersion model most accurately reproduces direct numerical simulation in the near field.

Funder

Clean Combustion Research Center, King Abdullah University of Science and Technology

Ministero dell'Istruzione, dell'Università e della Ricerca

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3