A novel one-step simplified lattice Boltzmann method and its application to multiphase flows with large density ratio

Author:

Abstract

Recently, a one-step simplified lattice Boltzmann method abandoning the original predictor–corrector scheme has been proposed for single-phase flows. In this method, the information of non-equilibrium distribution function (DF) is implicitly included in the difference of two equilibrium DFs at two different locations and time levels. Due to this treatment, the one-step method faces challenges such as extra virtual memory cost and additional boundary treatments. To overcome these drawbacks, a novel one-step simplified lattice Boltzmann method (NOSLBM) is developed by directly constructing the non-equilibrium DF with macroscopic variables. The NOSLBM preserves the merits of high computational efficiency and simple code programming in the original one-step method. Moreover, the present method is extended to multiphase flows. One NOSLBM for the solution of the Cahn–Hilliard equation is employed to capture the interface. Another one is adopted to solve the Navier–Stokes equations for the hydrodynamic fields. Numerical tests about interface capturing and single-phase flows indicate that the present method has a better performance on computational efficiency than that of the simplified multiphase lattice Boltzmann method (SMLBM), in which the predictor–corrector scheme is applied. Numerical tests about binary fluids with large density ratio imply the great accuracy and numerical stability of the present method.

Funder

the special project in ship of Green Ecology and Environmental Protection

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Hainan Province

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3