Oil–water two-phase flow-induced vibration of a cylindrical cyclone with vortex finder

Author:

Abstract

Cylindrical cyclones play an important role in oil–water separation and sewage treatment in the petroleum industry. Here, we describe the characteristics of vibration induced by a two-phase rotational flow in a cylindrical cyclone. The cyclone operating parameters together with a dimensional analysis and multiphase flow numerical simulation were used to understand the flow field characteristics. The frequency and amplitude of pressure fluctuation were obtained by measuring pressure changes at points on the axis of the device. It shows that the pressure in a cylindrical cyclone varies periodically during separation and that fluctuation frequency and amplitude are related to the inlet velocity and flow split ratio. The effect of the overflow split ratio on the pressure fluctuation frequency is negligible, but increasing the overflow split ratio will cause greater fluctuation of the flow. For a cylindrical cyclone, the pressure fluctuation frequency can be calculated from the inlet velocity. Adjusting the inlet velocity and the overflow split ratio changes the mechanical response of the structure. The results of a modal analysis show that the structural vibration response is consistent with the response state of the lowest point of the internal central-vortex pressure and that both are in approximate circular motion. Furthermore, the frequency of pressure fluctuation induced by the flow is close to the intrinsic frequency of the structure with a single bottom constraint, which can cause unwanted resonance easily. Therefore, an appropriately added constraint on a cylindrical cyclone should be taken into consideration to avoid the resonance frequency.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3