Atom by atom built subnanometer copper cluster catalyst for the highly selective oxidative dehydrogenation of cyclohexene

Author:

Valtera Stanislav1ORCID,Jašík Juraj1ORCID,Vaidulych Mykhailo1ORCID,Olszówka Joanna Elżbieta1ORCID,Zlámalová Magda23ORCID,Tarábková Hana2ORCID,Kavan Ladislav2ORCID,Vajda Štefan1ORCID

Affiliation:

1. Department of Nanocatalysis, J. Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, CZ-182 23 Prague 8, Czech Republic

2. Department of Electrochemical Materials, J. Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, CZ-182 23 Prague 8, Czech Republic

3. Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-128 40 Prague, Czech Republic

Abstract

The effect of particle size and support on the catalytic performance of supported subnanometer copper clusters was investigated in the oxidative dehydrogenation of cyclohexene. From among the investigated seven size-selected subnanometer copper particles between a single atom and clusters containing 2–7 atoms, the highest activity was observed for the titania-supported copper tetramer with 100% selectivity toward benzene production and being about an order of magnitude more active than not only all the other investigated cluster sizes on the same support but also the same tetramer on the other supports, Al2O3, SiO2, and SnO2. In addition to the profound effect of cluster size on activity and with Cu4 outstanding from the studied series, Cu4 clusters supported on SiO2 provide an example of tuning selectivity through support effects when this particular catalyst also produces cyclohexadiene with about 30% selectivity. Titania-supported Cu5 and Cu7 clusters supported on TiO2 produce a high fraction of cyclohexadiene in contrast to their neighbors, while Cu4 and Cu6 solely produce benzene without any combustion, thus representing odd–even oscillation of selectivity with the number of atoms in the cluster.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3