Challenges in predicting ΔrxnG in solution: The chelate effect

Author:

Mukadam A. A.1,East A. L. L.1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada

Abstract

Gibbs energies for reactions involving aqueous ions are challenging to predict due to the large solvation energies of such ions. A stringent test would be the ab initio reproduction of the aqueous-phase chelate effect, an entropic effect in reactions of very small enthalpy changes. This paper examines what is required to achieve such a reproduction for the paradigmatic reaction M(NH3)42+ + 2 en → M( en)22+ + 4 NH3 ( en = 1,2-ethylenediamine), for which ΔrxnG* and ΔrxnH* are −2.3 and +1.6 kcal mol−1, respectively, if M = Zn. Explicit solvation via simulation was avoided in order to allow sufficiently accurate electronic structure models; this required the use of continuum solvation models (CSMs), and a great deal of effort was made in attempting to lower the relative errors of ΔsolvG*[M(NH3)42+] vs ΔsolvG*[M( en)22+] from the CSMs available in Gaussian software. CSMs in ADF and JDFTx software were also tested. A uniform 2.2 kcal mol−1 accuracy in ΔrxnG* for all three metal-atom choices M = {Zn, Cd, Hg} was eventually achieved, but not from any of the known CSMs tested, nor from cavity size reoptimization, nor from semicontinuum modeling: post facto solvation energy corrections [one per solute type, NH3, en, M(NH3)42+, M( en)22+] were needed. It is hoped that this study will aid (and encourage) further CSM development for coordination-complex ions.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3