Abstract
To meet the cooling demands of high heat flow density hotspots in scenarios such as electronic chips, a novel three-dimensional stacked T-shaped thermoelectric cooler (STTEC) is designed in this study. Under steady-state conditions, a finite element method with coupled thermal–electrical–mechanical physical fields is utilized, and the temperature dependence of thermoelectric (TE) materials is considered. First, the cooling flux, coefficient of performance (COP), and minimum cooling temperature of STTEC under different input-current and thermal boundary conditions are investigated and compared to the traditional π-shaped thermoelectric cooler (π-TEC). Second, the effects of geometrical parameter variations under optimal currents on the cooling performance and reliability of STTEC are studied. Finally, the structural parameters are optimized. The results show that the STTEC altered the path of TE conversion and transfer, which significantly improved the optimal current. The STTEC has a remarkable advantage in cooling performance under low temperature differences or high cooling loads. Compared to the π-TEC, STTEC enhances cooling flux by 101.6%, rises COP by 358.5%, and lowers the cold-end temperature by 46.6 K. At optimal current conditions, by optimizing the thickness of the T-shaped copper slice and the height difference between the TE leg and the T-shaped copper slice, the thermal stress decreased by 18.4%. The STTEC’s novel design could inspire the manufacturing and commercialization of high-performance thermoelectric coolers.
Subject
General Physics and Astronomy