A toolbox for easy entry low wavenumber in situ atomic layer deposition transmission FTIR spectroscopy studies

Author:

Bin Afif Abdulla1ORCID,Dadlani Anup L.1ORCID,Flaten Andreas1,Lid Markus Joakim1,Ofstad Johannes2,Erbe Andreas2,Köllensperger Peter3,Torgersen Jan1ORCID

Affiliation:

1. Department of Industrial and Mechanical Engineering, Norwegian University of Science and Technology, Trondheim, Norway

2. Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim, Norway

3. Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway

Abstract

A detailed description of a flexible and portable atomic layer deposition (ALD) system is presented for conducting in situ Fourier transform infrared (FTIR) absorption spectroscopy studies during the evolution and growth of ALD films. The system is directly integrated with a commercial FTIR spectrometer (Bruker Vertex 80V) to avoid the necessity of an external optical path to the instrument, thereby mitigating complexity and optical losses. In this work, we use potassium bromide (KBr) with a 5 nm layer of sputtered Si as a substrate due to higher infrared transmittance when compared to a single-side polished Si wafer. The FTIR absorption study is conducted at normal incidence in transmission mode using a deuterated L-alanine doped triglycine sulfate (DTGS) detector owing to its potential applicability for reliable measurements at wavenumbers below ∼700 cm−1. We demonstrate this by measuring ex situ the transverse optical phonon of bulk Al2O3 centered at 680 cm−1. The integrity and functionality of the system to track the nucleation stage are validated by conducting in situ FTIR absorption measurements of Al2O3 using tri-methyl aluminum (TMA) and H2O. The measured IR absorption spectra for the Al2O3 growth after each cycle of TMA and H2O show the formation and removal of CH3 (2800–3000 cm−1) groups on the substrate surface and CH4 (3016 and 1306 cm−1) molecules in the reactor, thus confirming the successful tracking of ligand exchange. Thus, this instrument, together with the choice of KBr as substrate, can enable straightforward ALD nucleation studies using a DTGS detector having sufficient signal without additional optical setup and modifications to off-the-shelf FTIR systems that allow low wavenumber experiments.

Funder

Norges Forskningsråd

NorFab

Norwegian center for international cooperation in education

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3