Substrate-dependence of monolayer MoS2 thermal conductivity and thermal boundary conductance

Author:

Gabourie Alexander J.1ORCID,Köroğlu Çağıl1ORCID,Pop Eric123ORCID

Affiliation:

1. Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA

2. Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA

3. Precourt Institute for Energy, Stanford University, Stanford, California 94305, USA

Abstract

The thermal properties of two-dimensional (2D) materials, such as MoS2, are known to be affected by interactions with their environment, but this has primarily been studied only with SiO2 substrates. Here, we compare the thermal conductivity (TC) and thermal boundary conductance (TBC) of monolayer MoS2 on amorphous (a-) and crystalline (c-) SiO2, AlN, Al2O3, and h-BN monolayers using molecular dynamics. The room temperature, in-plane TC of MoS2 is ∼38 Wm−1 K−1 on amorphous substrates and up to ∼68 Wm−1 K−1 on crystalline substrates, with most of the difference due to substrate interactions with long-wavelength MoS2 phonons (<2 THz). An h-BN monolayer used as a buffer between MoS2 and the substrate causes the MoS2 TC to increase by up to 50%. Length-dependent calculations reveal TC size effects below ∼2  μm and show that the MoS2 TC is not substrate- but size-limited below ∼100 nm. We also find that the TBC of MoS2 with c-Al2O3 is over twice that with c-AlN despite a similar MoS2 TC on both, indicating that the TC and TBC could be tuned independently. Finally, we compare the thermal resistance of MoS2 transistors on all substrates and find that MoS2 TBC is the most important parameter for heat removal for long-channel (>150 nm) devices, while TBC and TC are equally important for short channels. This work provides important insights for electro-thermal applications of 2D materials on various substrates.

Funder

Achievement Rewards for College Scientists Foundation

Semiconductor Research Corporation

Stanford SystemX Alliance

Defense Advanced Research Projects Agency

Applications and Systems driven Center for Energy-Efficient Integrated NanoTechnologies

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3