Raman spectroscopy study of the slow order–order transformation of deuterium atoms: Ice XIX decay and ice XV formation

Author:

Thoeny Alexander V.1ORCID,Parrichini Iside S.1,Gasser Tobias M.1ORCID,Loerting Thomas1ORCID

Affiliation:

1. Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria

Abstract

The nature of the hydrogen substructure of a deuterated and deuterium chloride (DCI)-doped ice VI sample after cooling at 1.8 GPa has been a topic of recent interest—especially because the novel ice polymorph ice XIX was discovered in the course of such studies. We here investigate deuterated samples containing 5% H2O using Raman spectroscopy to probe for transitions associated with rearrangement of D-atoms in ice XIX. The protocol involving heating at subambient pressure (10 mbar) in this study follows closely the one used in our earlier neutron diffraction study. Heating of ice XIX induces a complex cascade of processes involving both ordering and disordering of D atoms. Our Raman spectra demonstrate that the transition sequence is ice XIX → ice VI → ice XV, in accordance with our earlier neutron diffraction result. First signs for ice XIX decay are evident at 100 K, while ice XV build-up is seen only at 108 K and above. Between 100 and 108 K, a transiently disordered D-substructure appears, where at 108 K, ice VI forms from ice XIX and simultaneously decays to produce ice XV—thereby establishing a dynamic equilibrium. Using isothermal, time-resolved Raman spectroscopy in real time, we here determine rate constants, Avrami exponents, and activation energies for both slow processes, ice XIX decay and ice XV build-up. The first transition in this sequence, ice XIX decay, is faster than the second transition, ice XV build-up, so that ice VI accumulates. On the basis of the Johnson–Mehl–Avrami–Kolmogorov data obtained from the isothermal Raman experiment, we additionally report kinetic models for the development of fractions of ices XIX, XV, and VI in non-isothermal heating experiments at different heating rates. These models consider the two coupled first-order transitions as separated processes, where the phase fractions are calculated for incrementally small temperature (or time) steps. These models compare favorably with our previous observations for slowly or rapidly heated ice XIX samples, such as in calorimetry or neutron diffraction experiments.

Funder

Austrian Academy of Sciences

Center for Molecular Water Sciences

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3