Configurational entropy of ice XIX and its isotope effect

Author:

Gasser Tobias M.,Thoeny Alexander V.,Fortes A. Dominic,Loerting Thomas

Abstract

AbstractIce XIX is a partly hydrogen-ordered polymorph related to disordered ice VI, similar to ice XV. We here investigate the order–order–disorder sequence ice XIX→ice XV→ice VI based on calorimetry at ambient pressure both for D2O and H2O-ice XIX. From these data we extract configurational entropy differences between ice XIX, ice XV and ice VI. This task is complex because, unlike for all other ices, the order–disorder transition from ice XIX to ice VI takes place in two steps via ice XV. Even more challenging, these two steps take place in an overlapping manner, so that careful separation of slow kinetics is necessary. This is evidenced best by changing the heating rate in calorimetry experiments: For fast heating experiments the second step, disordering of ice XV, is suppressed because the first step, formation of ice XV from ice XIX, is too slow. The transient state ice VI that is initially produced upon ice XIX decay then does not have enough time to convert to ice XV, but remains disordered all along. In order to tackle the challenge to determine the entropy difference between ice XIX and VI as well as the entropy difference between ice XV and VI we employ two different approaches that allow assessing the impact of kinetics on the entropy change. “Single peak integration” defines a kinetically limited result, but “combined peak integration” allows estimation of the true thermodynamic values. Our best estimate for the true value shows ice XIX to be much more ordered than ice XV (25 ± 3% vs 9 ± 4% of the Pauling entropy). For D2Oice XIX samples we obtain 28% of order, but only when a small number of fast H-isotope defects are used. In the second part we use these results to estimate the location of the ice XIX phase boundary both for protiated and deuterated ice XIX. The initial Clapeyron slope at ambient pressure is determined from the combination of neutron powder diffraction volume differences and calorimetry entropy differences data to be 21 K GPa−1 with an order–disorder transition temperature To-d(0.0 GPa) = 103 ± 1 K. An in situ bracketing experiment at 1.8 GPa yields To-d(1.8 GPa) = 116 ± 3 K, i.e., the phase boundary slope flattens at higher pressures. These data allow us to determine the region of thermodynamic stability of ice XIX in the phase diagram and to explain the surprising isotope shift reversal at 1.6 GPa compared to 0.0 GPa, i.e., why D2O-ice XIX disorders at lower temperatures than H2O-ice XIX at 1.6 GPa, but at higher temperatures at ambient pressures.

Funder

Austrian Science Fund

Österreichischen Akademie der Wissenschaften

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3