Affiliation:
1. Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Abstract
For energy harvesting with plasmonic photocatalysis, it is important to optimize geometrical arrangements of plasmonic nanomaterials, electron (or hole) acceptors, and co-catalysts so as to improve the charge separation efficiency and suppress charge recombination. Here, we employ a photocatalytic system with Au nanocubes on TiO2 and introduce MnO2 as an oxidation co-catalyst onto the nanocubes via site-selective oxidation based on plasmon-induced charge separation (PICS). However, it has been known that PbO2 is the only material that can be deposited onto Au nanomaterials through PICS with sufficient site-selectivity. Here we addressed this issue by introducing an indirect approach for MnO2 deposition via site-selective PbO2 deposition and subsequent galvanic replacement of PbO2 with MnO2. The indirect approach gave nanostructures with MnO2 introduced at around the top part, bottom part, or entire surface of the Au nanocubes on a TiO2 electrode. The activity of those plasmonic photocatalysts was strongly dependent on the location of MnO2. The key to improving the activity is to separate MnO2 from TiO2 to prevent recombination of the positive charges in MnO2 with the negative ones in TiO2.
Funder
Japan Society for the Promotion of Science
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献