Heat flux characteristics of a single droplet splashing on the liquid film obtained with a thermal lattice Boltzmann method

Author:

Yuan HaoORCID,He XiaolongORCID

Abstract

The double-distribution-function thermal lattice Boltzmann method is employed to investigate the heat flux characteristics of single droplet impact on a liquid film above a heated wall. The effects of impact velocity, liquid film thickness, droplet radius, and viscosity coefficient on the average and instant heat flux distribution are analyzed. The droplet impact first breaks the steady-state thermal boundary layer in the impact region, causing the heat flux in the wall impact region to increase. This is because the temperature gradient between the liquid film and the wall increases as the droplet dives downward and expands. The velocity discontinuity at the liquid jet sheet prevents the transfer of the transverse velocity in the liquid film to the static region, yielding a transition region. Convective heat transfer is dominant in the impact and transition regions, while conductive heat transfer is dominant in the static region. Moreover, a large impact velocity promotes the synergy between the temperature and flow velocity fields, enhancing the heat transfer efficiency. The kinetic energy consumption of the droplet increases with the liquid film thickness, which causes the heat flux to decrease. The effect of droplet radius on the heat flux at the wall is minimal. Furthermore, an increased liquid viscosity is not beneficial for wall heat dissipation.

Funder

National Natural Science Foundation of China

The Science and Technology Research Program of Chongqing Municipal Education Comission

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3