Thermal conductivity of multilayer polymer-nanocomposite thin films

Author:

Aryal Anil1ORCID,Bradicich Adelaide1,Iverson Ethan T.2,Long Carolyn T.3,Chiang Hsu-Cheng2,Grunlan Jaime C.123ORCID,Shamberger Patrick J.1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Texas A&M University, 3123 TAMU, College Station, Texas 77840, USA

2. Department of Chemistry, Texas A&M University, 3123 TAMU, College Station, Texas 77840, USA

3. Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, Texas 77840, USA

Abstract

The development of electrical insulators that are thermally conducting is critical for thermal management applications in many advanced electronics and electrical devices. Here, we synthesized polymer nanocomposite (PNC) films composed of polymers [polyethylenimine, poly(vinylamine), poly(acrylic acid), and poly(ethylene oxide)] and dielectric fillers (montmorillonite clay and hexagonal boron nitride) by layer-by-layer technique. The cross-plane thermal conductivity [Formula: see text] of the film was measured by the 3ω method. The effect of various factors such as film growth, filler type, filler volume fraction, polymer chemical structures, and temperature on the thermal conductivity is reported. The [Formula: see text] of PNCs with thickness from 37 nm to 1.34  μm was found to be in the range of 0.11 to 0.21 ± 0.02 W m−1 K−1. The [Formula: see text] values were found to be lower than the constituent polymer matrix. The experimental result is compared with existing theoretical models of nanocomposite systems to get insight into heat transfer behavior in such layered films composed of dielectrics and polymers.

Funder

President's Excellence Fund at Texas A&M University

Advanced Research Projects Agency - Energy

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual Clay Nanobrick Wall Thin Films with High Oxygen Barrier at High Humidity;Macromolecular Materials and Engineering;2023-12-08

2. Nanobrick Wall Multilayer Thin Films with High Dielectric Breakdown Strength;ACS Applied Engineering Materials;2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3