Dual Clay Nanobrick Wall Thin Films with High Oxygen Barrier at High Humidity

Author:

Iverson Ethan T.1ORCID,Chiang Hsu‐Cheng1ORCID,Fisher Sarah G.1,Legendre Hudson2,Schmieg Kendra2,Chang Edward2,Grunlan Jaime C.12ORCID

Affiliation:

1. Texas A&M University College Station TX 77843 USA

2. Department of Materials Science & Engineering and Mechanical Engineering Texas A&M University College Station TX 77843 USA

Abstract

AbstractThin polymer‐based coatings with high oxygen barrier at elevated humidity are needed for the protection of food and organic electronic devices. Polyelectrolyte‐based thin films (deposited via layer‐by‐layer assembly) perform well at ambient humidity, but their performance typically dwindles as humidity increases due to their hydrophilic nature. Retention of their high barrier can be achieved through the addition of chemical crosslinkers or the introduction of inorganic platelets that create a nanobrick wall structure. In this study, a nanobrick wall barrier prepared with two types of clay, with a thickness less than 200 nm, is shown to reduce the oxygen transmission rate (OTR) of 179 µm polyethylene terephthalate to less than 0.016 cm3 m−2 day−1 atm−1. At 90% relative humidity (RH), a quadlayer barrier consisting of polyethylenimine, boehmite clay, poly(acrylic acid), and vermiculite clay maintains nearly 90% of its barrier performance at 0% RH (OTR = 0.019 cm3 m−2 day−1 atm−1). This study demonstrates the potential of dual clay thin film nanocomposites to protect various consumer goods at high humidity.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3