Step unbunching phenomenon on 4H-SiC (0001) surface during hydrogen etching

Author:

Sakakibara Ryotaro1ORCID,Bao Jianfeng1ORCID,Yuhara Keisuke2,Matsuda Keita2ORCID,Terasawa Tomo-o3ORCID,Kusunoki Michiko3,Norimatsu Wataru14ORCID

Affiliation:

1. Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University 1 , Nagoya 464-8603, Japan

2. Department of Applied Chemistry, Graduate School of Engineering, Nagoya University 2 , Nagoya 464-8603, Japan

3. Institute of Materials and Systems for Sustainability, Nagoya University 3 , Nagoya 464-8603, Japan

4. Faculty of Science and Engineering, Waseda University 4 , Tokyo 169-8555, Japan

Abstract

We here report a step unbunching phenomenon, which is the inverse of the phenomenon of step bunching. When a 4H-SiC (0001) surface is annealed at a high temperature, step bunching arises due to the different velocities of the step motion in adjacent steps, resulting in steps with a height of more than several nanometers. We found that the bunched steps, thus, obtained by hydrogen etching in an Ar/H2 atmosphere were “unbunched” into lower height steps when annealed subsequently at lower temperatures. This unbunching phenomenon can be well explained by the consequence of the competition between energetics and kinetics. Our findings provide another approach for the surface smoothing of SiC by hydrogen etching and may give significant insight into the application of SiC power devices and two-dimensional materials growth techniques in general.

Funder

Japan Society for the Promotion of Science

Natural Science Foundation of Inner Mongolia

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3