Theoretical comparison of real-time feedback-driven single-particle tracking techniques

Author:

van Heerden Bertus12ORCID,Krüger Tjaart P. J.12ORCID

Affiliation:

1. Department of Physics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, 0002 Pretoria, South Africa

2. National Institute for Theoretical and Computational Sciences (NITheCS), South Africa

Abstract

Real-time feedback-driven single-particle tracking is a technique that uses feedback control to enable single-molecule spectroscopy of freely diffusing particles in native or near-native environments. A number of different real-time feedback-driven single-particle tracking (RT-FD-SPT) approaches exist, and comparisons between methods based on experimental results are of limited use due to differences in samples and setups. In this study, we used statistical calculations and dynamical simulations to directly compare the performance of different methods. The methods considered were the orbital method, the knight‘s tour (grid scan) method, and MINFLUX, and we considered both fluorescence-based and interferometric scattering (iSCAT) approaches. There is a fundamental trade-off between precision and speed, with the knight’s tour method being able to track the fastest diffusion but with low precision, and MINFLUX being the most precise but only tracking slow diffusion. To compare iSCAT and fluorescence, different biological samples were considered, including labeled and intrinsically fluorescent samples. The success of iSCAT as compared to fluorescence is strongly dependent on the particle size and the density and photophysical properties of the fluorescent particles. Using a wavelength for iSCAT that is negligibly absorbed by the tracked particle allows for an increased illumination intensity, which results in iSCAT providing better tracking for most samples. This work highlights the fundamental aspects of performance in RT-FD-SPT and should assist with the selection of an appropriate method for a particular application. The approach used can easily be extended to other RT-FD-SPT methods.

Funder

National Research Foundation

CSIR National Laser Center

South African Academy of Science and Art

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3