Customizable and highly sensitive 3D micro-springs produced by two-photon polymerizations with improved post-treatment processes

Author:

Shang Xinggang123,Wang Ning23,Wang Zimeng4,Jiang Hanqing23ORCID,Jia Yunfei4,Zhou Nanjia23,Qiu Min23ORCID

Affiliation:

1. College of Optical Science and Engineering, Zhejiang University, Hangzhou, China

2. Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, China

3. Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, China

4. Key Laboratory of Pressure Systems and Safety, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China

Abstract

Springs are ubiquitous in a variety of scientific and engineering fields. However, the comprehensive study on mechanical properties of micro-spring has not been fully conducted yet due to a lack of reliable productions of varied-shaped micro-springs. Here, we report the design and manufacturing of triple-helix-shaped springs employing two-photon polymerization (TPP) technologies and present a systemic study on the mechanical properties of micro-springs particularly involving spring constants of k. To construct high-quality hollow microstructures, we optimize the TPP process by combining violet light post-treatment with a proper selection of cleaning liquid. Consequently, we demonstrate that the sensitives k can be actively tuned over a range of two orders of magnitude, from ∼1.5 to ∼108.2  μN/ μm while maintaining a high resolution of ∼1  μN/ μm. Furthermore, compression tests showcase an excellent agreement among all force-vs-displacement lineshapes, resulting in a small k fluctuation of <1%. On the whole, we expected that the modified TPP technique along with proposed helical springs opens an alternative avenue toward micro-scale force detection, leading to potential applications in the field of bio-sensing, where typical forces to be measured exist within a broad range from several piconewtons to several micronewtons.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Shanghai Rising-Star Program

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3