Double multiple-relaxation-time model of lattice-Boltzmann magnetohydrodynamics at low magnetic Reynolds numbers

Author:

Magacho B.1ORCID,Tavares H. S.1ORCID,Moriconi L.1ORCID,Loureiro J. B. R.2ORCID

Affiliation:

1. Instituto de Física, Universidade Federal do Rio de Janeiro 1 , C.P. 68528, Rio de Janeiro, RJ CEP 21941-972, Brazil

2. Programa de Engenharia Mecânica, Coordenação dos Programas de Pós-Graduação em Engenharia, Universidade Federal do Rio de Janeiro 2 , C.P. 68503, Rio de Janeiro, RJ CEP 21945-970, Brazil

Abstract

We develop an improved lattice-Boltzmann numerical scheme to solve magnetohydrodynamic (MHD) equations in the regime of low magnetic Reynolds numbers, grounded on the central-moment (CM) and multi-relaxation-time (MRT) collision models. The simulation of the magnetic induction equation within the lattice-Boltzmann approach to MHD has been usually devised along the lines of the simplest phenomenological description—the single relaxation time (SRT) model to solve the complete induction equation. In order to deal with well-known stability difficulties of the SRT framework for larger magnetic relaxation time scales, we introduce, alternatively, a MRT technique for the solution of the magnetic induction equation, which proves to be efficient in extending the domain of applicability of the lattice-Boltzmann method to MHD problems. We also put forward a novel and practical boundary condition method to cope with the subtleties of magnetic Boltzmann-like distributions on curved boundaries. As supporting applications, we discuss the performance of the CM–MRT algorithm to describe the complex dynamics of the 3D Orszag–Tang vortex problem and open issues related to transient flow regimes in MHD pipe flows, subject to uniform and non-uniform magnetic fields.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Petrobras

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3