Persistence of large-scale coherent structures in a turbulent pipe flow through an improved lattice Boltzmann approach

Author:

Magacho B.1ORCID,Moriconi L.2ORCID,Loureiro J. B. R.3ORCID

Affiliation:

1. Instituto de Matemática Pura e Aplicada-IMPA, CEP 1 22460-320, Rio de Janeiro, RJ, Brazil

2. Instituto de Física, Universidade Federal do Rio de Janeiro 2 , CP 68528, CEP 21941-972, Rio de Janeiro, RJ, Brazil

3. Programa de Engenharia Mecânica, Coordenação dos Programas de Pós-Graduação em Engenharia, Universidade Federal do Rio de Janeiro 3 , CP 68503, CEP 21945-970, Rio de Janeiro, RJ, Brazil

Abstract

We simulated a turbulent pipe flow within the lattice Boltzmann method using a multiple-relaxation-time collision operator with Maxwell–Boltzmann equilibrium distribution expanded, for the sake of a more accurate description, up to the sixth order in Hermite polynomials. The moderately turbulent flow (Reτ≈181.3) is able to reproduce up to the fourth statistical moment with great accuracy compared with other numerical schemes and with experimental data. A coherent structure identification was performed based on the most energetic streamwise turbulent mode, which revealed a surprising memory effect related to the large-scale forcing scheme that triggered the pipe's turbulent state. We observe that the existence of large-scale motions that are out of the pipe's stationary regime does not affect the flow's detailed single-point statistical features. Furthermore, the transitions between the coherent structures of different topological modes were analyzed as a stochastic process. We find that for finely resolved data, the transitions are effectively Markovian, but for larger decimation time lags, due to topological mode degeneracy, non-Markovian behavior emerges, in agreement with previous experimental studies.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Shell Brasil

Publisher

AIP Publishing

Reference67 articles.

1. Existence and smoothness of the Navier-Stokes equation;Carlson,2006

2. Minimalist turbulent boundary layer model;Phys. Rev. E,2009

3. Hairpin vortex organization in wall turbulence;Phys. Fluids,2007

4. Distinct organizational states of fully developed turbulent pipe flow;Phys. Rev. Lett.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3