Chapman–Enskog derivation of multicomponent Navier–Stokes equations

Author:

Arnault Philippe1ORCID,Guisset Sébastien1

Affiliation:

1. CEA, DAM, DIF, 91297 Arpajon, France

Abstract

There are several reasons to extend the presentation of Navier–Stokes equations to multicomponent systems. Many technological applications are based on physical phenomena that are present in neither pure elements nor in binary mixtures. Whereas Fourier's law must already be generalized in binaries, it is only with more than two components that Fick's law breaks down in its simple form. The emergence of dissipative phenomena also affects the inertial confinement fusion configurations, designed as prototypes for the future fusion nuclear plants hopefully replacing the fission ones. This important topic can be described in much simpler terms than it is in many textbooks since the publication of the formalism put forward recently by Snider [Phys. Rev. E 82, 051201 (2010)]. In a very natural way, it replaces the linearly dependent atomic fractions by the independent set of partial densities. Then, the Chapman–Enskog procedure is hardly more complicated for multicomponent mixtures than for pure elements. Moreover, the recent proposal of a convergent kinetic equation by Baalrud and Daligault [Phys. Plasmas 26, 082106 (2019)] demonstrates that the Boltzmann equation with the potential of mean force is a far better choice in situations close to equilibrium, as described by the Navier–Stokes equations, than Landau or Lenard–Balescu equations. In our comprehensive presentation, we emphasize the physical arguments behind Chapman–Enskog derivation and keep the mathematics as simple as possible. This excludes, as a technical non-essential aspect, the solution of the linearized Boltzmann equation through an expansion in Hermite polynomials. We discuss the link with the second principle of thermodynamics of entropy increase, and what can be learned from this exposition.

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3