Toward direct spatial and intensity characterization of ultra-high-intensity laser pulses using ponderomotive scattering of free electrons

Author:

Longman A.1ORCID,Ravichandran S.23ORCID,Manzo L.1ORCID,He C. Z.23ORCID,Lera R.4ORCID,McLane N.2ORCID,Huault M.45ORCID,Tiscareno G.6ORCID,Hanggi D.6ORCID,Spingola P.6ORCID,Czapla N.6ORCID,Daskalova R. L.6ORCID,Roso L.7ORCID,Fedosejevs R.8ORCID,Hill W. T.239ORCID

Affiliation:

1. Lawrence Livermore National Laboratory 1 , Livermore, California 94550, USA

2. Institute for Physical Science and Technology, University of Maryland 2 , College Park, Maryland 20742, USA

3. Joint Quantum Institute, University of Maryland 3 , College Park, Maryland 20742, USA

4. Centro de Láseres Pulsados (CLPU) 4 , 37185 Villamayor, Salamanca, Spain

5. Departemento de Física Fundamental, Universidad de Salamanca 5 , 37008 Salamanca, Spain

6. The Ohio State University 6 , Columbus, Ohio 43210, USA

7. Departamento de Física Aplicada, Universidad de Salamanca 7 , 37008 Salamanca, Spain

8. Department of Electrical and Computer Engineering, University of Alberta 8 , Edmonton T6G1R1, Canada

9. Department of Physics, University of Maryland 9 , College Park, Maryland 20742, USA

Abstract

Spatial distributions of electrons ionized and scattered from ultra-low-pressure gases are proposed and experimentally demonstrated as a method to directly measure the intensity of an ultra-high-intensity laser pulse. Analytic models relating the peak scattered electron energy to the peak laser intensity are derived and compared to paraxial Runge–Kutta simulations highlighting two models suitable for describing electrons scattered from weakly paraxial beams (f#>5) for intensities in the range of 1018−1021 W cm−2. Scattering energies are shown to be dependent on gas species, emphasizing the need for specific gases for given intensity ranges. Direct measurements of the laser intensity at full power of two laser systems are demonstrated, both showing a good agreement between indirect methods of intensity measurement and the proposed method. One experiment exhibited the role of spatial aberrations in the scattered electron distribution, motivating a qualitative study on the effect. We propose the use of convolutional neural networks as a method for extracting quantitative information on the spatial structure of the laser at full power. We believe the presented technique to be a powerful tool that can be immediately implemented in many high-power laser facilities worldwide.

Funder

U.S. Department of Energy

Fusion Energy Sciences

Office of Science

Natural Sciences and Engineering Research Council of Canada

National Science Foundation

Laserlab-Europe

Junta de Castilla y León

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3