Log-law recovery through reinforcement-learning wall model for large eddy simulation

Author:

Vadrot Aurélien1ORCID,Yang Xiang I. A.2ORCID,Bae H. Jane3ORCID,Abkar Mahdi1ORCID

Affiliation:

1. Department of Mechanical and Production Engineering, Aarhus University 1 , Aarhus N 8200, Denmark

2. Department of Mechanical Engineering, Pennsylvania State University 2 , State College, Pennsylvania 16802, USA

3. Graduate Aerospace Laboratories, California Institute of Technology 3 , Pasadena, California 91125, USA

Abstract

This paper focuses on the use of reinforcement learning (RL) as a machine-learning (ML) modeling tool for near-wall turbulence. RL has demonstrated its effectiveness in solving high-dimensional problems, especially in domains such as games. Despite its potential, RL is still not widely used for turbulence modeling and is primarily used for flow control and optimization purposes. A new RL wall model (WM) called VYBA23 is developed in this work, which uses agents dispersed in the flow near the wall. The model is trained on a single Reynolds number (Reτ=104) and does not rely on high-fidelity data, as the backpropagation process is based on a reward rather than an output error. The states of the RLWM, which are the representation of the environment by the agents, are normalized to remove dependence on the Reynolds number. The model is tested and compared to another RLWM (BK22) and to an equilibrium wall model, in a half-channel flow at eleven different Reynolds numbers {Reτ∈[180;1010]}. The effects of varying agents' parameters, such as actions range, time step, and spacing, are also studied. The results are promising, showing little effect on the average flow field but some effect on wall-shear stress fluctuations and velocity fluctuations. This work offers positive prospects for developing RLWMs that can recover physical laws and for extending this type of ML models to more complex flows in the future.

Funder

Danmarks Frie Forskningsfond

Office of Naval Research

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3