Experimental demonstration of exceptional points of degeneracy in linear time periodic systems and exceptional sensitivity

Author:

Kazemi Hamidreza1ORCID,Nada Mohamed Y.1ORCID,Nikzamir Alireza1ORCID,Maddaleno Franco2,Capolino Filippo1ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697, USA

2. Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy

Abstract

We present the experimental demonstration of the occurrence of exceptional points of degeneracy (EPDs) in a single resonator by introducing a linear time-periodic variation of one of its components. This is in contrast with the requirement of two coupled resonators with parity time-symmetric systems with precise values of gain and loss. In the proposed scheme, only the tuning of the modulation frequency is required, which is easily achieved in electronic systems. The EPD is a point in a system parameters’ space at which two or more eigenstates coalesce, and this leads to unique properties not occurring at other non-degenerate operating points. We show theoretically and experimentally the existence of a second-order EPD in a time-varying single resonator. Furthermore, we measure the sensitivity of the proposed system to a small structural perturbation and show that the two shifted system’s eigenfrequencies are well detected even for relative perturbations of [Formula: see text], with distinguished peaks well above the noise floor. We show that the regime of operation of the system at an EPD leads to a unique square-root-like sensitivity, which can devise new exceptionally sensitive sensors based on a single resonator by simply applying time modulation.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3