Affiliation:
1. City University of New York
2. Universidad Autónoma de Madrid
3. Imperial College London
Abstract
Photonic systems with time-varying modulations have attracted considerable attention as they allow for the design of non-reciprocal devices without the need for an external magnetic bias. Unlike time-invariant systems, such modulations couple modes with different frequencies. Here, we discuss how this coupling and particle-hole symmetry may lead to the resonant interaction of positive and negative frequency oscillators. To illustrate this idea, we analyze a dispersive spacetime crystal described by a Drude-Lorentz model with a traveling-wave modulation. Our findings demonstrate that the interaction between positive and negative frequency bands can induce parametric instabilities under certain conditions, stemming from the interplay between dispersion and spacetime modulations. In particular, we find that material dispersion creates the conditions for the formation of instabilities for arbitrarily small modulations speeds in the absence of dissipation mechanisms.
Funder
Institution of Engineering and Technology
Simons Foundation
Instituto de Telecomunicações
Fundação para a Ciência e a Tecnologia
Ministerio de Ciencia, Innovación y Universidades
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献