Prediction of mechanical properties and fatigue life of nanosilver slurry in chip interconnection

Author:

Yang Hui1ORCID,Cheng Shuai1

Affiliation:

1. College of Mechanical and Control Engineering, Guilin University of Technology , Guilin 541004, China

Abstract

This article investigates the failure mode and mechanism of copper pillar solder joints in temperature cycling experiments, focusing on a Cu/nano Ag/Cu solder joint structure. The hot pressing bonding condition at 300 °C with insulation for 10 s is chosen for the experiments. Based on the life test results, the thermal cycling fatigue life of the nanosilver solder joint is determined to be 2050 cycles. To gain further insights, finite element software ANSYS is employed to simulate nanosilver solder joints in flip chips, revealing the stress–strain distribution within the solder joints. The simulation utilizes the Anand viscoplastic constitutive model for the solder joint, providing a reasonable representation of the stress–strain behavior under thermal cycling load. Notably, the simulation highlights that the maximum stress and strain occur in the contact area between the solder joint and the copper column. To enhance accuracy, the calculation equation is refined using relevant experience, resulting in a prediction of the thermal fatigue life of nanosilver solder joints. This prediction aligns closely with the experimental results. The research outcomes not only contribute valuable insights into the behavior of nanosilver solder but also serve as a reference for its application in electronic packaging.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3