Multi-species temperature and number density analysis of a laser-produced plasma using dual-comb spectroscopy

Author:

Weeks Reagan R. D.1ORCID,Zhang Yu12ORCID,Harilal Sivanandan S.3ORCID,Phillips Mark C.1ORCID,Jones R. Jason1ORCID

Affiliation:

1. James C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA

2. Department of Physics, University of Arizona, Tucson, Arizona 85721, USA

3. Pacific Northwest National Laboratory, Richland, Washington 99354, USA

Abstract

Dual-comb spectroscopy (DCS) represents a novel method of using absorption spectroscopy as a diagnostic tool for multispecies analysis of excitation temperatures and column densities in laser-produced plasmas (LPPs). DCS was performed on a LPP generated by ablating a multielement alloy containing Nd, Gd, and Fe. Transitions from all three elements were observed in absorption spectra measured from 530.08 to 535.19 nm at seven time-delays from 31 to 250  μs after ablation. The spectra were fit using a nonlinear regression algorithm to determine peak areas, and excitation temperatures and column densities were determined for the three atomic species separately using Boltzmann plots. The measured excitation temperatures of Nd I and Gd I showed good agreement at all time-delays, whereas the Fe I temperature was found to be higher, and the ratios between the column densities varied with delay. The observations are understood via effects of LPP spatial averaging, elemental fractionation, and molecular formation and are compared and contextualized with previous work studying LPPs using other spectroscopic techniques. A brief discussion of the precision and accuracy of the determined excitation temperatures and column densities is also presented.

Funder

Air Force Office of Scientific Research

Defense Threat Reduction Agency

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3