Comparison of excitation temperature of a laser-produced plasma by combining emission and absorption spectroscopy

Author:

Polek M. P.12ORCID,Phillips M. C.3ORCID,Beg F. N.1ORCID,Harilal S. S.2ORCID

Affiliation:

1. Center for Energy Research, University of California San Diego 1 , La Jolla, California 92093, USA

2. Pacific Northwest National Laboratory 2 , Richland, Washington 99352, USA

3. James C. Wyant College of Optical Sciences, University of Arizona 3 , Tucson, Arizona 85721, USA

Abstract

Measurement of the temporal evolution of laser-produced plasma temperature is very important for many of its applications, and several plasma diagnostic tools are routinely used by researchers. However, it is very challenging to measure the properties of the plasma at the early and late times of its evolution using a single diagnostic tool. In this study, we combined emission and laser absorption spectroscopy to compare the excitation temperatures of a laser-produced uranium plasma system. Several U I transitions in the near-infrared spectral range (775–800 nm) were considered, and the Boltzmann plot method was used to measure the excitation temperatures using both emission and absorption spectroscopy. Emission spectroscopy provided early-time temperature measurements of the plasma up to times 2–20 µs, while absorption spectroscopy provided temperature measurements at late times of plasma evolution (for times 5–80 µs). The emission and absorbance of U I transitions were found to follow the Boltzmann distribution, indicating the plasma is likely in the state of local thermodynamic equilibrium even at late times of its lifetime. The emission and absorption-based time-resolved excitation temperatures demonstrated good agreement at earlier times (≤15 µs) in the overlapped temporal region, while a deviation in the measured values was seen at times (≥15 µs), and potential reasons for such a disagreement are discussed.

Funder

Defense Threat Reduction Agency

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3