Magic angle spinning effects on longitudinal NMR relaxation: 15N in L-histidine

Author:

Afrough Armin1ORCID,Christensen Nichlas Vous1ORCID,Jensen Rune Wittendorff Mønster12ORCID,Juhl Dennis Wilkens12ORCID,Vosegaard Thomas12ORCID

Affiliation:

1. Interdisciplinary Nanoscience Center, Aarhus University 1 , Aarhus, Denmark

2. Department of Chemistry, Aarhus University 2 , Aarhus, Denmark

Abstract

Solid-state magnetic resonance is a unique technique that can reveal the dynamics of complex biological systems with atomic resolution. Longitudinal relaxation is a mechanism that returns longitudinal nuclear magnetization to its thermal equilibrium by incoherent processes. The measured longitudinal relaxation rate constant however represents the combination of both incoherent and coherent contributions to the change of nuclear magnetization. This work demonstrates the effect of magic angle spinning rate on the longitudinal relaxation rate constant in two model compounds: L-histidine hydrochloride monohydrate and glycine serving as proxies for isotopically-enriched biological materials. Most notably, it is demonstrated that the longitudinal N15 relaxation of the two nitrogen nuclei in the imidazole ring in histidine is reduced by almost three orders of magnitude at the condition of rotational resonance with the amine, while the amine relaxation rate constant is increased at these conditions. The observed phenomenon may have radical implications for the solid-state magnetic resonance in biophysics and materials, especially in the proper measurement of dynamics and as a selective serial transfer step in dynamic nuclear polarization.

Funder

Horizon 2020 Framework Program

HORIZON EUROPE Framework Program

Novo Nordisk Foundation

Danish Ministry of Higher Education and Science

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3