NiGa2O4 interfacial layers in NiO/Ga2O3 heterojunction diodes at high temperature

Author:

Egbo Kingsley1ORCID,Garrity Emily M.2ORCID,Callahan William A.12ORCID,Chae Chris3ORCID,Lee Cheng-Wei2ORCID,Tellekamp Brooks1ORCID,Hwang Jinwoo3ORCID,Stevanovic Vladan2ORCID,Zakutayev Andriy1ORCID

Affiliation:

1. National Renewable Energy Laboratory 1 , Golden, Colorado 80401, USA

2. Colorado School of Mines 2 , Golden, Colorado 80401, USA

3. Department of Materials Science and Engineering, The Ohio State University 3 , Columbus, Ohio 43210, USA

Abstract

NiO/Ga2O3 heterojunction diodes have attracted attention for high-power applications, but their high temperature performance and reliability remain underexplored. Here, we report the time evolution of the electrical properties in the widely studied p-NiO/n-Ga2O3 heterojunction diodes and formation of NiGa2O4 interfacial layers at high temperatures. Results of our thermal cycling experiment show an initial leakage current increase which stabilizes after sustained thermal load, due to reactions at the NiO–Ga2O3 interface. High-resolution TEM microstructure analysis of the devices after thermal cycling indicates that the NiO–Ga2O3 interface forms a ternary compound at high temperatures, and thermodynamic calculations suggest the formation of the spinel NiGa2O4 layer between NiO and Ga2O3. First-principles defect calculations find that NiGa2O4 shows low p-type intrinsic doping and hence can serve to limit electric field crowding at the interface. Vertical NiO/Ga2O3 diodes with intentionally grown ∼5 nm thin spinel-type NiGa2O4 interfacial layers show an excellent device ON/OFF ratio of >1010 (± 3 V), VON of ∼1.9 V, and increased breakdown voltage of ∼1.2 kV for an initial unoptimized 300 μm diameter device. These p–n heterojunction diodes are promising for high-voltage, high temperature applications.

Funder

Advanced Materials and Manufacturing Technologies Office

National Renewable Energy Laboratory

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3