Giant room-temperature modulation of magnetic anisotropy by electric fields in CoFeB/(011)-PMN-PT multiferroic heterostructures with two distinct initial magnetic anisotropies

Author:

He Lanping1,Wang Cangmin1,Wang Shaoting1,Li Wanyu1,Jiang Yang2,Ge Weifeng1,An Linlin1ORCID,Qiu Huaili1,Chen Meixia1,Yang Yuanjun1ORCID,Wang Lan1ORCID

Affiliation:

1. Department of Physics, and Lab of Low-dimensional Magnetism and Spintronic Devices, School of Physics, Hefei University of Technology 1 , Hefei, Anhui 230009, People's Republic of China

2. School of Microelectronics, Hefei University of Technology 2 , Hefei, Anhui 230009, People's Republic of China

Abstract

This paper reports that the in situ growth magnetic field (Hg) during magnetic-phase CoFeB deposition impacts the electric-field control of magnetic anisotropy in Co40Fe40B20/(011)-Pb(Mg1/3Nb2/3)0.7Ti0.3O3 [CoFeB/(011)-PMN-PT] composite multiferroic heterostructures at room temperature. In the Hg1 mode (in situ Hg along the [011¯] direction of the ferroelectric PMN-PT substrate), the electric-field-controlled modulation ratios of the magnetic coercivity HC and saturation magnetic field HS are approximately −47% and +156%, respectively. However, in the Hg2 mode (in situ Hg along the [100] direction of the ferroelectric PMN-PT substrate) of the CoFeB/(011)-PMN-PT multiferroic heterostructure, the electric-field-controlled modulation ratios of the magnetic coercivity HC and saturation magnetic field HS can reach as high as +162% and +393%, respectively. Moreover, the electric-field-controlled magnetic coercive field HC exhibits a butterfly shape when plotted versus the applied electric fields in both modes, which matches the in-plane butterfly strain loop of the ferroelectric PMN-PT substrate. However, the electric-field-controlled saturation magnetic field HS presents a square loop, which is very consistent with the ferroelectric loop of the PMN-PT substrate. This result may be ascribed to the distinct pathway of the ferroelastic domain switching in the (011)-oriented PMN-PT substrate. This study provides a new idea for the design of spintronic devices based on multiferroic heterostructures.

Funder

National Natural Science Fundation of China

Open Fundation of the University of Science and Technology of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3