Ferroelectric polymers for neuromorphic computing

Author:

Niu Xuezhong1,Tian Bobo123ORCID,Zhu Qiuxiang13,Dkhil Brahim2ORCID,Duan Chungang14ORCID

Affiliation:

1. Key Laboratory of Polar Materials and Devices (MOE), Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, China

2. Université Paris-Saclay, CentraleSupélec, CNRS-UMR8580, Laboratoire Structures, Propriétés et Modélisation des Solides, 91190 Gif-sur-Yvette, France

3. Zhejiang Lab, Hangzhou 310000, China

4. Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi 030006, China

Abstract

The last few decades have witnessed the rapid development of electronic computers relying on von Neumann architecture. However, due to the spatial separation of the memory unit from the computing processor, continuous data movements between them result in intensive time and energy consumptions, which unfortunately hinder the further development of modern computers. Inspired by biological brain, the in situ computing of memristor architectures, which has long been considered to hold unprecedented potential to solve the von Neumann bottleneck, provides an alternative network paradigm for the next-generation electronics. Among the materials for designing memristors, i.e., nonvolatile memories with multistate tunable resistances, ferroelectric polymers have drawn much research interest due to intrinsic analog switching property and excellent flexibility. In this review, recent advances on artificial synapses based on solution-processed ferroelectric polymers are discussed. The relationship between materials' properties, structural design, switching mechanisms, and systematic applications is revealed. We first introduce the commonly used ferroelectric polymers. Afterward, device structures and the switching mechanisms underlying ferroelectric synapse are discussed. The current applications of organic ferroelectric synapses in advanced neuromorphic systems are also summarized. Eventually, the remaining challenges and some strategies to eliminate non-ideality of synaptic devices are analyzed.

Funder

National Natural Science Foundation of China

Open Research project Zhejiang Lab

Science and Technology Innovation Plan Of Shanghai Science and Technology Commission

Shanghai Pujiang Program

Fundamental Research Funds for the Central Universities

Agence Nationale de la Recherche

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3