Inertial focusing of a dilute suspension in pipe flow

Author:

Aouane Othmane1ORCID,Sega Marcello1ORCID,Bäuerlein Bastian23ORCID,Avila Kerstin23ORCID,Harting Jens14ORCID

Affiliation:

1. Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Cauerstraße 1, 91058 Erlangen, Germany

2. University of Bremen, Faculty of Production Engineering, Badgasteiner Straße 1, 28359 Bremen, Germany

3. Leibniz Institute for Materials Engineering IWT, Badgasteiner Straße 3, 28359 Bremen, Germany

4. Department of Chemical and Biological Engineering and Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 1, 91058 Erlangen, Germany

Abstract

The dynamics of rigid particle suspensions in a wall-bounded laminar flow present several nontrivial and intriguing features, including particle ordering, lateral transport, and the appearance of stable, preferential locations like the Segré–Silberberg annulus. The formation of more than one annulus is a particularly puzzling phenomenon that is still not fully explained. Here, we present numerical simulation results of a dilute suspension of particles in (periodic) pipe flow based on the lattice Boltzmann and the discrete element methods. Our simulations provide access to the full radial position history of the particles while traveling downstream. This allows to accurately quantify the transient and steady states. We observe the formation of the secondary, inner annulus and show that its position invariably shifts toward the Segré–Silberberg one if the channel is sufficiently long, proving that it is, in fact, a transient feature for Reynolds numbers ( Re) up to 600. We quantify the variation of the channel focusing length ([Formula: see text]) with Re. Interestingly and unlike the theoretical prediction for a point-like particle, we observe that [Formula: see text] increases with Re for both the single particle and the suspension.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3