Motion of a solid particle in an ore-lifting riser with transverse vibrations

Author:

Wei MingzhuORCID,Duan JinlongORCID,Wang XuORCID,Zhou JifuORCID

Abstract

Deep-sea mining lifting risers experience vibrations induced by the action of ocean waves and currents, and these vibrations have an impact on the lifting efficiency of ores transported inside the risers. Here, to investigate the effect of riser vibration on ore transport, the motion of a single solid particle in a riser oscillating in the lateral direction is simulated taking account of collisions between the particle and the riser using the governing equation for motion of a spherical particle in Poiseuille flow and the Hertz–Mindlin soft sphere collision model. Validations are conducted based on comparisons between numerical and experimental results. Then, the motion of the particle in the vibrating riser is explored, considering the effects of the initial position of release of the particle, the frequency and amplitude of the riser vibrations, and collisions between the particle and the riser. It is found that the initial position of release affects only the initial motion of the particle, but not its overall motion. With increasing vibrational frequency and amplitude of the riser, the relative lateral velocity of the particle shows an increasing trend, while its vertical velocity and lifting distance are clearly decreased. The frequency with which the vertical particle velocity varies is twice as the vibrational frequency of the riser. Moreover, collisions have significant effects on the particle motion, especially on the velocities of the particle, the phase difference between the displacements of the particle and the vibrating riser, and the particle trajectory. Finally, the behavioral regime map of the particle under different vibrational frequencies and amplitudes of the riser is established preliminarily.

Funder

National Natural Science Foundation of China

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3