Reverse to forward density segregation depending on gas inflow velocity in vibrated fluidized beds

Author:

Jiang ZhaohuaORCID,Tsuji TakuyaORCID,Oshitani JunORCID,Washino KimiakiORCID,Tanaka ToshitsuguORCID

Abstract

Particle density segregations in vibrated fluidized beds depending on gas inflow velocity under the same vertical vibration condition are studied. Coarse-graining discrete element method and computational fluid dynamics numerical simulations are employed to capture the behaviors of reverse segregation in which heavy particles are located above light particles at zero gas inflow velocity or at velocities considerably lower than the minimum fluidization velocity of light particles. Furthermore, upon increasing the gas inflow velocity slightly, the forward segregation occurs, such that heavy particles are located below light particles. The mechanisms are also elucidated using the simulation results. Because of the relative motions between the particles and bed caused by vertical vibration, negative gauge pressure is observed to be dependent on the vibration phase. In the reverse segregation case, the accumulative effect of the downward gas pressure gradient force induced by vibration overcomes the upward force of the forced air flow. The wall friction transports both the heavy and light particles in the vicinity of the sidewall to the bed bottom, where the local void fraction is comparatively high and reverse segregation mainly occurs. Reverse segregation results from the combined effects of the downward gas pressure gradient force, particle transport, and local formation of the high void region. The increase in gas inflow velocity enhances the upward pressure gradient force, resulting in forward segregation.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3