Comparison and validation of various drag models for fluidization characteristics of bubble fluidized beds with a high-speed particle image velocimetry experiment

Author:

Han Chen,Wang HuiORCID,Yang Lianhong,Yang YangORCID

Abstract

Bubbling liquefaction of dense particles is one of the most common forms of industrial fluidization in gas–solid flow systems. Computational fluid dynamics and the discrete element method are important tools for studying dense gas–solid flows. In these methods, the momentum transfer between phases relies on a drag model, so a reasonable choice of drag model is crucial for accurately predicting the hydrodynamic behavior of dense gas–solid flows. This paper investigates the effect of different drag models on the flow behavior prediction of dense gas–solid flow for the “Small-Scale Challenge Problem-I” published by the National Energy Technology Laboratory in 2013. The gas–solid fluidization characteristics, such as instantaneous particle flow processes, particle velocity vector distributions, changes in the fluidized bed height, and average gas phase pressure drops, were compared for different drag models. A detailed validation analysis of each dominant drag model was carried out in conjunction with the experimental data. The results show that the drag model significantly affects the numerically predicted results of particles’ hydrodynamic behavior, especially in terms of the bed height variation and the remixing behavior of particles. These research results are expected to improve the predictive accuracy of gas–solid flow hydrodynamic behavior and provide guidance for designing and optimizing fluidized beds, which has theoretical and practical significance.

Funder

Natural Foundation of Xinjiang

China Postdoctoral Science Foundation

Cooperative Research Project of the Ministry of Education's "Chunhui Program"

Natural Science Foundation of Jiangsu Province

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3