Synthetic turbulence generator for lattice Boltzmann method at the interface between RANS and LES

Author:

Xue Xiao1ORCID,Yao Hua-Dong1ORCID,Davidson Lars1ORCID

Affiliation:

1. Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 41296 Gothenburg, Sweden

Abstract

The paper presents a synthetic turbulence generator (STG) for the lattice Boltzmann method (LBM) at the interface of the Reynolds averaged Navier–Stokes (RANS) equations and the LBM large eddy simulation (LES). We first obtain the RANS velocity field from a finite volume solver at the interface. Then, we apply a numerical interpolation from the RANS velocity field to the LBM velocity field due to the different grid types of RANS and LBM. The STG method generates the velocity fluctuations, and the regularized LBM reconstructs the particle distribution functions at the interface. We perform a turbulent channel flow simulation at [Formula: see text] with the STG at the inlet and the pressure-free boundary condition at the outlet. The velocity field is quantitatively compared with the periodic lattice Boltzmann based LES (LES-LBM) channel flow and the direct numerical simulation (DNS) channel flow. Both the adaptation length and time for the STG method are evaluated. Also, we compare the STG-LBM channel flow results with the existing LBM synthetic eddy method (SEM-LBM) results. Our numerical investigations show good agreement with the DNS and periodic LES-LBM channel flow within a short adaptation length. The adaptation time for the turbulent channel flow is quantitatively analyzed and matches the DNS around 1.5–3 domain flow-through time. Finally, we check the auto-correlation for the velocity components at different cross sections of the streamwise direction. The proposed STG-LBM is observed to be both fast and robust. The findings show good potential for the hybrid RANS/LES-LBM based solver on the aerodynamics simulations and a broad spectrum of engineering applications.

Funder

Chalmers Transport Area of Advance

Swedish Research Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3