High-order thread-safe lattice Boltzmann model for high performance computing turbulent flow simulations

Author:

Montessori Andrea1ORCID,La Rocca Michele1ORCID,Amati Giorgio2ORCID,Lauricella Marco3,Tiribocchi Adriano34ORCID,Succi Sauro56ORCID

Affiliation:

1. Department of Civil, Computer Science and Aeronautical Technologies Engineering 1 , Rome 00146, Italy

2. SCAI, SuperComputing Applications and Innovation Department, CINECA 2 , Via dei Tizii, 6, Rome 00185, Italy

3. Istituto per le Applicazioni del Calcolo CNR 3 , via dei Taurini 19, 00185 Rome, Italy

4. INFN “Tor Vergata” 4 Via della Ricerca Scientifica 1, 00133 Roma, Italy

5. Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia 5 , 00161 Roma, Italy

6. Department of Physics, Harvard University 6 , Cambridge, Massachusetts 02138, USA

Abstract

We present a highly optimized thread-safe lattice Boltzmann model in which the non-equilibrium part of the distribution function is locally reconstructed via recursivity of Hermite polynomials. Such a procedure allows the explicit incorporation of non-equilibrium moments of the distribution up to the order supported by the lattice. Thus, the proposed approach increases accuracy and stability at low viscosities without compromising performance and amenability to parallelization with respect to standard lattice Boltzmann models. The high-order thread-safe lattice Boltzmann is tested on two types of turbulent flows, namely, the turbulent channel flow at Reτ=180 and the axisymmetric turbulent jet at Re = 7000; it delivers results in excellent agreement with reference data [direct numerical simulations (DNS), theory, and experiments] and (a) achieves peak performance [∼5×1012 floating point operations (FLOP) per second and an arithmetic intensity of ∼7 FLOP/byte on a single graphic processing unit] by significantly reducing the memory footprint, (b) retains the algorithmic simplicity of standard lattice Boltzmann computing, and (c) allows to perform stable simulations at vanishingly low viscosities. Our findings open attractive prospects for high-performance simulations of realistic turbulent flows on GPU-based architectures. Such expectations are confirmed by excellent agreement among lattice Boltzmann, experimental, and DNS reference data.

Funder

European Research Council

Publisher

AIP Publishing

Reference45 articles.

1. Fluid turbulence;Rev. Mod. Phys.,1999

2. Towards exascale lattice Boltzmann computing;Comput. Fluids,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3