Energetic laser-driven proton beams from near-critical-density double-layer targets under moderate relativistic intensities

Author:

Mei Zhusong1ORCID,Pan Zhuo1ORCID,Liu Zhipeng1,Xu Shirui1ORCID,Shou Yinren1ORCID,Wang Pengjie1ORCID,Cao Zhengxuan1ORCID,Kong Defeng1ORCID,Liang Yulan1,Peng Ziyang1,Song Tan1,Chen Xun1,Xu Tianqi1ORCID,Gao Ying1ORCID,Chen Shiyou1,Zhao Jiarui1ORCID,Zhao Yanying1,Yan Xueqing123ORCID,Ma Wenjun123ORCID

Affiliation:

1. State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University 1 , Beijing 100871, China

2. Beijing Laser Acceleration Innovation Center 2 , Huairou, Beijing 101400, China

3. Institute of Guangdong Laser Plasma Technology 3 , Baiyun, Guangzhou 510540, China

Abstract

Double-layer targets composed of near-critical-density carbon nanotube foams (CNFs) and solid foils have shown their advantages in laser-driven ion acceleration under high relativistic intensity. Here, we report the experimental and numerical results on the laser-accelerated proton beams from such targets under moderate relativistic intensities I∼5×1019W/cm2. 40-TW femtosecond laser pulses were used to irradiate CNF-based double-layer targets. Compared to single-layer targets, significant enhancements on the cutoff energy and numbers of ions were observed. It was found that the CNF layer also leads to a larger divergence angle and a more homogeneous spatial distribution profile of the proton beam. Particle-in-cell simulations reveal the reason for the enhanced proton acceleration. It is found that the lateral electric field and the strong magnetic field built by the directly accelerated electrons from the CNF layer contribute to the enlarged divergence angle.

Funder

NSFC Innovation Group Project

National Grand Instrument Project

National Natural Science Foundation of China

National Science Fund for Distinguished Young Scholars

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3