Synergistic enhancement of laser-proton acceleration with integrated targets

Author:

Liu Zhipeng1ORCID,Gao Ying1ORCID,Wu Qingfan1,Pan Zhuo1ORCID,Liang Yulan1,Song Tan1,Xu Tianqi1ORCID,Shou Yinren2ORCID,Zhang Yujia1ORCID,Chen Haoran1,Han Qihang1ORCID,Hua Chenghao1,Chen Xun1,Xu Shirui1ORCID,Mei Zhusong1ORCID,Wang Pengjie3ORCID,Peng Ziyang1,Zhao Jiarui1ORCID,Chen Shiyou1,Zhao Yanying1,Yan Xueqing145ORCID,Ma Wenjun145ORCID

Affiliation:

1. State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University 1 , Beijing 100871, China

2. Center for Relativistic Laser Science, Institute for Basic Science 2 , Gwangju 61005, South Korea

3. Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf 3 , Dresden 01328, Germany

4. Beijing Laser Acceleration Innovation Center 4 , Huairou, Beijing 101400, China

5. Institute of Guangdong Laser Plasma Technology 5 , Baiyun, Guangzhou 510540, China

Abstract

In proton acceleration from laser-irradiated thin foil targets, adding foams on the front surface or connecting a helical coil on the rear surface of the foil has proven to be an effective scheme to enhance proton energy. In this paper, we make the first attempt to incorporate the above two enhancement schemes for laser-proton acceleration by simultaneously adding foams and connecting a helical coil to a thin foil target. By utilizing such integrated targets in the experiment, focused beams were generated. The maximum proton energy and the number of energetic protons are apparently enhanced. Moreover, quasi-monoenergetic peaks were formed at the high-energy end of the spectra. Particle-in-cell plasma simulations and electromagnetic beam dynamics simulations show that the double-layer target not only enhances the energy of protons but also leads to a multiple-fold increase in the number of escaped electrons, which results in an enhanced post-acceleration in helical coil subsequently.

Funder

the National Grand Instrument Project

the NSFC Innovation Group Project

National Science Fund for Distinguished Young Scholars

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3